Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS Comput Biol ; 17(1): e1008223, 2021 01.
Article in English | MEDLINE | ID: covidwho-1088652

ABSTRACT

Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time-series data. BETS uses elastic net regression and stability selection from bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling efficient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark, the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of similar performance and additionally infers whether causal effects are activating or inhibitory. We apply BETS to transcriptional time-series data of differentially-expressed genes from A549 cells exposed to glucocorticoids over a period of 12 hours. We identify a network of 2768 genes and 31,945 directed edges (FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: Overexpression experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in primary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is available as an open source software package at https://github.com/lujonathanh/BETS.


Subject(s)
Glucocorticoids/pharmacology , Models, Statistical , Transcriptome/drug effects , A549 Cells , Algorithms , Computational Biology , Humans , Lung/chemistry , Lung/metabolism , Machine Learning , Software , Transcriptome/genetics
2.
R Soc Open Sci ; 7(11): 200958, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1005759

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 have been implicated in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). The expression of ACE2 and TMPRSS2 in the lung epithelium might have implications for the risk of SARS-CoV-2 infection and severity of COVID-19. We use human genetic variants that proxy angiotensin-converting enzyme (ACE) inhibitor drug effects and cardiovascular risk factors to investigate whether these exposures affect lung ACE2 and TMPRSS2 gene expression and circulating ACE2 levels. We observed no consistent evidence of an association of genetically predicted serum ACE levels with any of our outcomes. There was weak evidence for an association of genetically predicted serum ACE levels with ACE2 gene expression in the Lung eQTL Consortium (p = 0.014), but this finding did not replicate. There was evidence of a positive association of genetic liability to type 2 diabetes mellitus with lung ACE2 gene expression in the Gene-Tissue Expression (GTEx) study (p = 4 × 10-4) and with circulating plasma ACE2 levels in the INTERVAL study (p = 0.03), but not with lung ACE2 expression in the Lung eQTL Consortium study (p = 0.68). There were no associations of genetically proxied liability to the other cardiometabolic traits with any outcome. This study does not provide consistent evidence to support an effect of serum ACE levels (as a proxy for ACE inhibitors) or cardiometabolic risk factors on lung ACE2 and TMPRSS2 expression or plasma ACE2 levels.

SELECTION OF CITATIONS
SEARCH DETAIL